当前位置:首页 > 问答

数字期权定价

我来帮TA回答

看涨期权价格 题目求解

1.用一阶二叉树法求
价格约为1.68942
42X-3=38X X=0.75 experience(-0.08*1/12)=0.993356
F=30-38*0.75*0.993356 =1.68942
2.B-S公式的推导证明 根据平价公式的两边设定组合,再根据无套利原则证明
3.X1+X2=(μ1+μ2,((σ1)平方+(σ2)平方+2*σ1*σ2*ρ)的开方)

期权价格如何定位

期权的价格与价值
期权的价格就是期权费。以下是决定期权价格的六大变量:
现货价格(Spot price);
合同价格(Strike price) ;
合同期 (Expiration date) ;
波幅(Volatility);
本国利率(Interest rate);
(股票)分红率(Dividend yield)(如果是外汇期权,这就是外国利率) 。
以上六大变量,每一个都对期权的价格/价值的估算有重要作用,缺一不可。
计算期权的价格公式大约有六七期权;另一个是Cox - RubinsteinBinomial
Options Pricing Model,这个公式主要用来计算美式期权。用这两种公式计算出来的期权价格也充分反映出以上两种不同风格期权的基本内涵:美式期权总是比欧式期权贵一些,因为美式期权有“提前行使权利”的优势。至于美式期权到底比欧式期权贵多少,要看实际情况而定,并无一定公式。但有些学者和业者经过大量的调查研究和比较,得出的结论是:美式期权的价格要比同样的欧式期权的价格平均高1.5%左右。
那么,当我们看到许多不同期权及其价格时,如何去理解和应用呢?我们如何把这些看上去复杂和混乱的数字转化成概念以符合投资需要,然后再进一步把这些概念和数字“资本化”,以实现我们的投资愿望呢?请读者先看一下实际期权价格(表2)。
表2
AMER 9月买权(Calls) 9月卖权(Puts)
合同价格 卖出价/买入价/成交价 卖出价/买入价/成交价
25 27/8 3 3 7/16 1/2 1/2
30 3/9 9/16 1/2 27/8 31/8 31/8
35 1/6 1/8 73/8 77/8 63/8
以上价格取于B1oomberg(1996年9月9日11点零4分),当时的现货价格是$27 1/2。
总的来说,期权价格是反映其商品价格未来变动的可能性,也就是概率。概率是期权价格计算的核心。它最变化莫测,也最有意思。如果掌握了这一点,投资者可以说是入门了。在进一步探讨期权价格之前,有必要先把三个有关期权价位的概念介绍一下。
价内(In一the一money or ITM):期权到期或到期之前,买家有利可图;
价外(Out一the-money of OTM):期权到期或到期之前,买家无利可图。
平价(At-the-money of ATM):期权到期或到期之前,买家无利可图,此时合同价格等于现货价格。
当以上三种概念用合同价格(X)和现货价格(S) 的关系表示时,就会有以下几种情况(表3):
表3
买权(Calls)
卖权(Puts) ITM
S>X S<X
ATM X=S
如果比价内更价内,则是深价内(Deep in-the-money);如果比价外更价外,则是深价外(Deep out-the-money)。
以上读者可以总结出一些规律:如果买权在价内,其同类的卖权必在价外;反之亦然。在价内的期权一定比在价外的期权要贵例如,America Online(AMER) 股票现货价格在$27 1/2,其9月卖权@$3O则在价内。因为如果买到该期权,立即行使其权利,在$3O上把股票抛出,然后立即再以市场价格买进平仓,投资者可获利$21/2($ 3O?/FONT>$ 27 1/2=$2 1/2)。此时我们还可以看到该卖权的价格必大于$21/2(成交价=$3 1/8),否则就有无风险套利(Risk-free arbitrage)的机会。该卖权的同类买权(9月Call@3O)则在价外。若此时行使权利,便无利可图。
期权概念中的价位风险(Delta)就充分反映了商品价格变化的概率。如果其价位风险是50%,就说明该期权有50%的机会到期在价内。在这种情况下,该期权成败的机会是一半对一半。投资者们应该注意的是,75%在价内的概率是非常高的,但在到期或到期之前,不等于该期权一定总在价内;25%在价内的概率是非常低的、但在到期或到期之前,不等于该期权一定总在价外,因为未来商品价格会不断变化,从而也导致其期权的价格不断变化。如果你在价外买进期权,而后该期权变化在价内,你的投资便增值;如果你在价内买进期权,而后该期权变化在价外,你的投资便贬值。
有关价位风险和期权概率的计算是很复杂的。当投资者在作期权买卖时,不是人人手中有一台电脑,先把数据一个个输入,然后再把计算出来的结果与市场相比较,因为这样太慢了。有一种简明、直接的方法可以很快地估算出期权的概率。表4列出了当现货价格=$30时的有关数据。
表4
合同价格 买权价位 买权概率 卖权价位 卖权概率 概率
(绝对值) (绝对值) 总和
20 深价内 100% 深价内 0% 100%
25 价内 75% 价内 25% 100%
30 平价 50% 平价 50% 100%
35 价外 25% 价外 75% 100%
40 深外价 0% 深外价 100% 100%
俗话说,“一分钱,一分货。”美式期权比欧式期权有“提前行使权利”的优势,所以投资者也多付近1.5%的期权费。在价内的期权比在价外的期权要贵,因为概率在发生作用。当投资者买进期权(无论是买权还是卖权)时,实际上他们是在买一定时间内希望会发生作用的概率。买权反映价格上动的概率,卖权反映价格下动的概率。期权的价值主要是由以下两种价值组成的:
期权价值=内涵价值+时间价值
内涵价值:期权的实际价值,即概率。
时间价值:期权投资者为投资期权而进行融资的成本。
如果现货价格=$27 1/2,9月的American Online Put@3O=$3 1/8,那么,3 1/8=21/2+5/8( OV=IV十TV);
9月的America Online Put@25=$1/2,那么,1/2=l/2(OV=TV);
10月的Aericar Online Put@25= $13/8,那么,13/8=13/8(OV=TV)。
可以看出,价内的期权至少等于它的内涵价值;价外的期权只有时间价值,而且时间越长,价值越大,因为融资需要的成本也越高。

睿德二元期权黑色黄色绿色红色分别为什么期权价格

这个你可以问问睿德二元期权平台的客户经理啊,详细的让他给你讲一下。

期权定价模型中的二叉树模型里面有个数字不懂如何来的?

二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。
构建二项式期权定价模型
编辑
1973年,布莱克和舒尔斯(Black and Scholes)提出了Black-Scholes期权定价模型,对标的资产的价格服从对数正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。
1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简化的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。
二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。
随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。
一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价 格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一 证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。
二叉树思想
编辑
1:Black-Scholes方程模型优缺点:
优点:对欧式期权,有精确的定价公式;
缺点:对美式期权,无精确的定价公式,不可能求出解的表达式,而且数学推导和求解过程在金融界较难接受和掌握。
2:思想:
假定到期且只有两种可能,而且涨跌幅均为10%的假设都很粗略。修改为:在T分为狠多小的时间间隔Δt,而在每一个Δt,股票价格变化由S到Su或Sd。如果价格上扬概率为p,那么下跌的概率为1-p。
3:u,p,d的确定:
由Black-Scholes方程告诉我们:可以假定市场为风险中性。即股票预期收益率μ等于无风险利率r,故有:
SerΔt = pSu + (1 − p)Sd (23)
即:e^{r\Delta t}=pu+(1-p)d=E(S) (24)
又因股票价格变化符合布朗运动,从而 δS N(rSΔt,σS√Δt)(25)
=>D(S) = σ2S2δt;
利用D(S) = E(S2) − (E(S))2
E(S2) = p(Su)2 + (1 − p)(Sd)2
=>σ2S2Δt = p(Su)2 + (1 − p)(Sd)2 − [pSu + (1 − p)Sd]2
=>σ2Δt = p(u)2 + (1 − p)(d)2 − [pu + (1 − p)d]2 (26)
又因为股价的上扬和下跌应满足:ud=1 (27)
由(24),(26),(27)可解得:
其中:a = erδt。
4:结论:
在相等的充分小的Δt时段内,无论开始时股票价格如何。由(28)~(31)所确定的u,d和p都是常数。(即只与Δt,σ,r有关,而与S无关)。

期权定价模型的B-S模型

期权定价模型基于对冲证券组合的思想。投资者可建立期权与其标的股票的组合来保证确定报酬。在均衡时,此确定报酬必须得到无风险利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能获得超额回报(超过与风险相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。
B-S期权定价模型 (以下简称B-S模型)及其假设条件 1、金融资产收益率服从对数正态分布;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。 C=S·N(D1)-L·(E^(-γT))*N(D2)
其中:
D1=(Ln(S/L)+(γ+(σ^2)/2)*T)/(σ*T^(1/2))
D2=D1-σ*T^(1/2)
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
γ—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为γ0)一般是一年复利一次,而γ要求利率连续复利。γ0必须转化为r方能代入上式计算。两者换算关系为:γ=LN(1+γ0)或γ0=Eγ-1。例如γ0=0.06,则γ=LN(1+0.06)=0583,即100以583%的连续复利投资第二年将获106,该结果与直接用γ0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。 (一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G]=E[max(ST-L,O)]
其中,E[G]—看涨期权到期期望值ST—到期所交易金融资产的市场价值
L—期权交割(实施)价
到期有两种可能情况:1、如果STL,则期权实施以进帐(In-the-money)生效,且mAx(ST-L,O)=ST-L
2、如果ST<>
max(ST-L,O)=0
从而:E[CT]=P×(E[ST|STL)+(1-P)×O=P×(E[ST|STL]-L)
其中:P—(STL)的概率E[ST|STL]—既定(STL)下ST的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C=P×E-rT×(E[ST|STL]-L)(*)这样期权定价转化为确定P和E[ST|STL]。
首先,
对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(ST)与现价(S)比值的对数值,即收益=1NSTS。由假设1收益服从对数正态分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以证明,相对价格期望值大于EμT,为:E[STS]=EμT+σT22=EμT+σ2T2=EγT从而,μT=T(γ-σ22),且有σT=σT其次,求(STL)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζχ]=1-N(χ-μσ)其中:ζ—正态分布随机变量χ—关键值μ—ζ的期望值σ—ζ的标准差所以:P=Pr06[ST1]=Pr06[1NSTS]1NLS]=1N-1NLS2)TTNC4由对称性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定STL下ST的期望值。因为E[ST|ST]L]处于正态分布的L到∞范围,所以,E[ST|ST]=S EγT N(D1)N(D2)
其中:
D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最后,
将P、E[ST|ST]L]代入(*)式整理得B-S定价模型:C=S N(D1)-L E-γT N(D2)(二)B-S模型应用实例假设市场上某股票现价S为 164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:
①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328
②求D2:D2=0.0328-0.29×0.0959=-0.570
③查标准正态分布函数表,得:N(0.03)=0.5120 N(-0.06)=0.4761
④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803
因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。
(三)看跌期权定价公式的推导B-S模型是看涨期权的定价公式。
根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:
S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T
移项得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,将B-S模型代入整理得:P=L E-γT [1-N(D2)]-S[1-N(D1)]此即为看跌期权初始价格定价模型。 B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S- E-γT N(D1)-L E-γT N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004= 6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S E-δT N(D1)-L E-γT N(D2) 自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步。

期权定价模型的历程

期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。大多从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
1979年,科克斯(Cox)、罗斯(Ross)和卢宾斯坦(Rubinsetein)的论文《期权定价:一种简化方法》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。